

SAND2000-8877

Unlimited Release

Printed October 2000

Some Parallel Extensions to Optimization Methods in OPT++

V. E. Howle1, S. M. Shontz2, P. D. Hough3

Computational Sciences and Mathematics Research Department, MS 9217

Sandia National Laboratories

Livermore, CA 94551-0969

ABSTRACT

OPT++ provides an array of optimization tools for solving scienti�c and

engineering design problems. While these tools are useful, all of the code is

serial. With increasingly easy access to multiprocessor machines and clusters

of workstations, this results in unnecessarily long times to solution. In order

to correct this problem, we have implemented a number of parallel techniques

in OPT++. In particular, we have incorporated a speculative gradient algo-

rithm that drastically reduces the time to solution for standard trust-region

and line search algorithms. In addition, we have implemented a new version

of the Trust-Region Parallel Direct Search (TRPDS) algorithm of Hough and

Meza that yields a signi�cant reduction in solution time for problems with

expensive function evaluations.

Keywords: parallel optimization, nonlinear programming, optimization soft-

ware

1Email: vehowle@ca.sandia.gov. Part of this work performed while the author was a

member of The Center for Applied Mathematics at Cornell University, supported by NSF

grant CCR-9619489, NSF grant DMS-9805602, and ONR grant N00014-97-1-0681.
2Currently located at The Center for Applied Mathematics, 657 Frank H. T. Rhodes

Hall, Cornell University, Ithaca, NY 14853. Email: shontz@cam.cornell.edu. This work

sponsored in part by the National Physical Science Consortium.
3Email: pdhough@ca.sandia.gov

3

This page intentionally left blank.

4

1 Introduction

Optimization of functions derived from the modeling and simulation of some

physical process constitutes an important class of problems in many engi-

neering and scienti�c applications. Often, the computer simulation entails

the solution of a system of nonlinear partial di�erential equations (PDE) in

two or three dimensions. Other applications include particle dynamics sim-

ulations or problems in chemical kinetics. The main characteristic of these

types of problems is that the function evaluation is computationally expen-

sive and dominates the total cost of the optimization problem. Depending on

the nature of the application and the solution method employed, there can

also be noise associated with the evaluation of the objective function. This

noise can usually be reduced, but only at the cost of making the computa-

tion time even greater. In many of these applications, derivative information

is also not available or must be computed using �nite di�erences, thereby

increasing the cost of the optimization and generating noisy gradients. For-

tunately, the dimension of the optimization problem in many of these optimal

design problems is small (usually on the order of tens of parameters). In this

study, we will concentrate on techniques for parallelizing unconstrained opti-

mization algorithms when the number of available processors is comparable

to the number of optimization parameters. The rationale for this decision

is that although massively parallel computers are available, the majority of

computational power in most industrial or scienti�c settings consists of small

clusters of shared memory processors (SMP's) or networks of workstations

(NOW's) that can be used in a similar capacity.

Schnabel [10] gave an excellent review of the challenges and limitations

in parallel optimization. In that review, Schnabel identi�ed three major

levels for introducing parallelism: 1) parallelize the function, gradient, and

constraint evaluations, 2) parallelize the linear algebra, and 3) parallelize the

optimization algorithm at a high level. There have been many attempts to

parallelize nonlinear optimizationmethods at all of these levels. A description

of these e�orts can be found in, e.g., [7]. In this study, we choose to focus

on the third option due to the characteristics of the problems mentioned

above. In particular, the �rst option is not usually available to us because

for many situations we do not have access to the source code for the function

or the constraints. In addition, the dimension of the optimization problems of

interest is usually small, and therefore parallelizing the linear algebra would

not yield any bene�ts.

5

In this paper, we consider two classes of parallel optimization methods.

The �rst is a speculative gradient approach introduced by Byrd, Schnabel,

and Shultz [2]. This is a line-search algorithm that speculatively computes

components of the �nite di�erence gradient at the trial point while the func-

tion is being evaluated at that point. Since the trial point is accepted the

majority of the time, this can result in substantial computational savings over

the non-speculative version of the algorithm. The other class of methods is

the Trust-Region Parallel Direct Search (TRPDS) algorithm developed by

Hough and Meza [7]. This method combines a trust-region method with a

parallel direct search (PDS) method in a way that retains the best proper-

ties of both. TRPDS provides computational savings over both the standard

trust-region and the PDS methods. In addition, it provides a great deal of

exibility to allow the incorporation of techniques that will result in further

savings.

The remainder of the paper is organized as follows. In section 2, we de-

scribe the speculative gradient approach mentioned above. In section 3, we

describe the TRPDS algorithm and how it �ts into the generalized approx-

imation model framework. In addition, we describe a modi�cation to the

TRPDS algorithm that promises computational savings over the original im-

plementation. Section 4 contains numerical comparisons of the algorithm on

a set of standard test problems, as well as on an engineering application. Sec-

tion 5, the �nal section of the paper, contains a discussion of the conclusions

and future research directions.

2 Speculative Gradients

One approach to the type of optimization problems considered in this paper

is to use a traditional Newton method. This type of method comes in two

avors: line search and trust region. These methods have the bene�t of desir-

able convergence properties; however, they o�er few options for parallelizing

at a high level. One notable exception was introduced by Byrd, Schnabel,

and Shultz in 1988 [2]. Because analytic gradients are not typically available

in our applications, it is perfectly reasonable to assume that they will be

approximated by �nite di�erences. Byrd et al. suggest a straightforward way

to take advantage of multiple processors when using a line search method

with �nite di�erence gradients. In particular, extra processors are used to

compute components of the �nite di�erence gradient at the trial point while

6

the function is being evaluated at that point. This is referred to as a specu-

lative gradient approach, and the idea applies equally well in the trust-region

setting. We focus on using the speculative gradient idea with a trust-region

method for the remainder of this paper.

Recall that in each iteration of a trust-region method, a quadratic model

of the objective function, f , is formed, and a region in which the model is

trusted to approximate the actual function accurately is determined. A trial

step is then computed by approximately solving the following subproblem:

min
s2IR

n

 (s) = g(xc)
T s+

1

2
sTHcs; (1)

s. t. ksk
2
� Æc;

where xc is the current point, s is the step, g(xc) is the gradient of f at the

current point, Hc � r2f(xc) is the Hessian approximation at the current

point, and Æc is the size of the trust region. Once a step has been computed,

the function is evaluated at the trial point, xt = xc + s. If there is suÆ-

cient decrease in the function value, the gradient and the Hessian are then

evaluated at that point.

In a parallel setting with p processors, p� 1 of the processors are sitting

idle while the function is evaluated at the trial point. The goal of the specu-

lative gradient approach is to remedy this ineÆcient use of processors in the

following manner. While we are evaluating the function at the trial point,

use the remaining p � 1 processors to calculate up to p � 1 components of

the �nite di�erence gradient. If the trial point is accepted, we already have

p � 1 components of the gradient available and only need to calculate the

remaining n� (p� 1) components, where n is the dimension of the problem.

If the trial point is not accepted, we simply try again at the next trial point.

In that case, we have not lost any more computational time than was already

required for the function evaluation.

With the speculative gradients change, the trust-region algorithm is as

follows.

7

Algorithm 1. Trust-Region method with Speculative Gradients

Given p processors, x0, g0, H0, Æ0, and � 2 (0; 1)

for k = 0; 1; : : : until convergence do

for i = 0; 1; : : : until step accepted do

1. Find si that approximately solves (1)

2. Processor 1: evaluate f(xk + si)

Processor j: evaluate gj�1(xk + si) for j = 2; : : : ; p

3. Compute � = (f(xk + si)� f(xk))= (si)

if � > � then

4. Accept step, set xk+1 = xk + si
5. Evaluate gj(xk + si) for j = p; : : : ; n� (p� 1)

6. Update Hk

else

7. Reject step

end if

8. Update Æk
end for

end for

Our current implementation only takes advantage of n+1 processors, even

if more are available. One way to take advantage of additional processors

would be to extend the speculative idea to computing as much of the �nite

di�erence Hessian as possible. We leave this to future work and for the

purposes of this paper, we use a BFGS approximation to the Hessian.

3 TRPDS with Generalized Approximation

Models

In order to take advantage of the strengths of both the trust-region (TR) and

parallel direct search (PDS) classes of algorithms, Hough and Meza developed

the Trust-Region PDS (TRPDS) class of algorithms [7]. TRPDS employs

the standard trust-region framework, but uses PDS to solve a non-standard

subproblem to compute the step at each iteration. This subproblem is known

as the PDS subproblem and is de�ned as

min
s2IR

n

f(xc + s) (2)

s. t. ksk2 � 2Æc;

8

where xc is the current point, s is the step, and Æc is the size of the trust

region. It is important to note that the only di�erence from the standard

trust-region method occurs in the computation of the step, s. In particular,

the actual objective function, rather than a quadratic model of that function,

is approximately minimized (using PDS) over the trust region.

Figure 1: Overview of the TRPDS algorithm. The point xCP is the Cauchy

point, xN is the Newton point, and xC is the current point. These points

are used to initialize the simplex over which PDS approximately minimizes

the function. The solid circle represents the trust region. The step length is

allowed to be twice the size of the trust region (dotted circle) to allow for the

possibility of taking a step longer than the Newton step.

Figure 1 illustrates the basic idea of TRPDS. See the paper by Hough

and Meza for details of the algorithm [7].

Hough and Meza observed that the TRPDS class of algorithms �ts into

the generalized trust-region framework of Alexandrov, Dennis, Lewis, and

Torczon [1]. The generalized framework provides a great deal of exibility

both in the choice of trust-region model and in the method of computing

the step at each iteration. In particular, let a be an approximation to the

objective function, f . If

1. a(xc) = f(xc),

2. ra(xc) = rf(xc),

and the sequence of steps generated during the optimization satis�es a frac-

tion of Cauchy decrease condition (FCD) according to a, then the standard

9

trust-region convergence theory implies that this class of methods will con-

verge [1].

The TRPDS algorithm takes advantage of the exibility in the step com-

putation in the sense that it solves a non-standard subproblem within the

trust-region framework. (Though a can be any model that satis�es condi-

tions 1 and 2, TRPDS currently uses the standard quadratic model.) We

build on that exibility by extending the step computation to a two-phase

approach that incorporates the use of a second approximation model. The

�rst phase consists of using PDS to �nd the p best approximate solutions to

the following problem:

min
s2IR

n

m(xc + s) (3)

s. t. ksk2 � 2Æc;

where p is the number of processors and m is a computationally inexpen-

sive approximation to the objective function. Notice that this resembles

the PDS subproblem except the objective function has been replaced by an

approximation model. In the second phase of the step computation, each

processor evaluates the objective function at one of these p trial points. The

point that yields the lowest function value is returned as the trial point to

the trust-region framework and is processed according to the standard trust-

region algorithm. We refer to this variation of the TRPDS algorithm as

TRPDS(p).

A formal statement of the TRPDS(p) algorithm follows.

10

Algorithm 1. TRPDS(p)

Given p processors, x0; g0; H0; Æ0; and � 2 (0; 1)

for k = 0; 1; : : : until convergence do

1. Solve HksN = �gk
for i = 0; 1; : : : until step accepted do

2. Form an initial simplex using sN
3. Compute the p best approximate solutions s1; : : : ; sp to (3)

using PDS

4. Determine s 2 fs1; : : : ; spg that minimizes f(xk + s)

5. Compute � = (f(xk + si)� f(xk))= (si)

if � > � then

6. Accept step and set xk+1 = xk + si, evaluate gk+1, Hk+1

else

7. Reject step

end if

8. Update Æ

end for

end for

There are many issues to consider in the TRPDS(p) algorithm such as

forming the initial simplex and computing the PDS step; however, these

issues are discussed in [7] so we do not repeat the discussions here. Instead,

we focus on the computational impact of using an approximation model. The

results of our numerical study appear in the following section.

4 Numerical Results

In order to evaluate the performance of the extensions to the trust-region

and TRPDS algorithms, we chose a standard set of test problems from the

literature and an engineering application problem based on a computer model

of a chemical vapor deposition furnace.

In all of the tests, gradient approximations were computed using parallel

forward di�erences. Also, the TRPDS(p) algorithm requires an approxima-

tion model for the step computation. We used a quadratic model constructed

by forming a Taylor series expansion of the objective function, i.e.,

f(xc + s) � m(xc + s) = f(xc) + gT
c
s+

1

2
sTHcs:

11

Here gc = g(xc) is the gradient of f at the current point, and Hc = H(xc) is

the current Hessian approximation.

4.1 Standard Test Problems

We used a number of test problems obtained from papers by Mor�e, Gar-

bow, and Hillstrom [9], Byrd, Schnabel, and Shultz [2], and Conn, Gould,

and Toint [3]. For comparison purposes, we solved these problems with the

Table 1: Test problems.

Number Problem

1 almost

2 broyden1a

3 broyden1b

4 broyden2a

5 broyden2b

6 bv

7 chain singular

8 chain wood

9 chebyquad

10 cragg levy

11 epowell

12 erosen

13 gen brown

14 gen wood

15 ie

16 lin

17 lin0

18 penalty1

19 penalty2

20 toint trig

21 tointbroy

22 trig

23 vardim

12

standard TRPDS algorithm, TRPDS(p), a standard BFGS trust-region al-

gorithm, and a BFGS trust-region algorithm with speculative gradients. The

test problems are listed in Table 1.

The starting points used for the problems were the same as those given

in the references. All algorithmic parameters are listed below:

Table 2: Algorithmic parameters.

Parameter Value

Machine Epsilon 2:22045� 10�16

Maximum Step 1000

Minimum Step 1:49012� 10�8

Maximum Iter 500

Maximum Fcn Eval 10000

Step Tolerance 1:49012� 10�8

Function Tolerance 1:49012� 10�8

Gradient Tolerance 6:05545� 10�6

LineSearch Tolerance 0:0001

The tests were run on a 64-processor SGI Origin 2000 with the IRIX 6.5

operating system. The step tolerance, the function tolerance, and the gradi-

ent tolerance were used as stopping criteria for the optimization algorithms

in the spirit of Gill, Murray, and Wright [4].

The results of the experiments for the standard problems appear in Fig-

ures 2 through 7. In our applications, the most important measure of per-

formance is the total time to solution of the problem; however, these test

problems are extremely inexpensive, making time measurements impractical.

Instead, we compare the total number of concurrent function evaluations re-

quired for each method, where a concurrent function evaluation is de�ned

as in [7]. We feel that this is an accurate reection of how much time the

algorithms require relative to each other since the computational cost of the

function dominates the cost of the algorithms in our applications.

First, we compare a standard BFGS trust-region algorithm to the same

algorithm with speculative gradient evaluations incorporated. For the specu-

lative gradient method with forward di�erences, the ideal number of proces-

sors is n + 1, where n is the dimension of the problem. In this case, we can

13

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TR with Parallel Grads vs. TR with Speculative Grads

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

TR with Parallel Grads
TR with Spec Grads

Figure 2: Comparison of BFGS trust-region algorithm and BFGS trust-region

algorithm with speculative gradients. The dimension of the problem is 8, and

the number of processors used is 9. The BFGS trust-region algorithm with

speculative gradients beat the BFGS trust-region algorithm with parallel �nite

di�erence gradients.

speculatively calculate the entire gradient each time we evaluate the func-

tion at a trial point. So when the trial point is accepted, a second concurrent

function evaluation is not required as it is in the non-speculative approach.

Note that this implies that we can reduce the number of concurrent function

evaluations by up to 50 percent over the standard trust-region algorithm with

parallel �nite di�erence gradients. Therefore, for our comparisons of these

two variants of the trust-region algorithm, we use n+ 1 processors.

Results for n = 8 are shown in Figure 2. As expected, for all of the test

problems, the BFGS trust-region algorithm with speculative gradients needs

fewer concurrent function evaluations than the standard BFGS trust-region

14

algorithm using only parallel �nite di�erences. In the best cases, the specula-

tive gradient variant takes 50 percent fewer concurrent function evaluations.

These are the test problems for which we accepted the initial trial point at ev-

ery iteration. Even in the worst case (problem 9), where the initial trial point

was accepted only 76 percent of the time, the speculative gradient approach

required 43 percent fewer concurrent evaluations than the non-speculative

variant. Schnabel states that in his experience, Newton methods accept the

initial trial point about 60� 70 percent of the time [10]. Based on that ob-

servation, as well as on the numerical results presented here, we can expect

always to see a substantial bene�t to using the speculative gradient variant

of Newton methods when �nite di�erence gradients are required.

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TRPDS vs. TRPDS(p)

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

TRPDS
TRPDS(p)

Figure 3: Comparison of TRPDS algorithm and TRPDS(p) algorithm. The

dimension of the problem is 8, and the number of processors used is 9. The

TRPDS(p) algorithm beat the TRPDS algorithm nearly every time.

15

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TRPDS vs. TRPDS(p)

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

TRPDS
TRPDS(p)

Figure 4: Comparison of TRPDS and TRPDS(p). The problem dimension

is 8, and the number of processors used is 16. TRPDS(p) beat TRPDS on

most test problems.

We next compare TRPDS(p) to the standard TRPDS algorithm. For the

standard TRPDS algorithm, the ideal situation is to have the same number

of search scheme points (i.e., points at which PDS evaluates the function) as

processors so that there is only one concurrent function evaluation per PDS

iteration. In the case of TRPDS(p), it is not obvious what the ideal situation

is since, by design, there is only one concurrent function evaluation per PDS

iteration regardless of the number of search scheme points or processors.

Furthermore, it is not clear how the use of an approximation model will

a�ect the performance of the algorithm. For our initial tests, we �xed the

search scheme size at 2 � n, where n is the dimension of the problem, and

we ran tests on n+ 1 processors and 2� n processors.

Results for n = 8 are shown in Figure 3 (with p = 9) and Figure 4 (with

16

p = 16). We note that the concurrent function evaluations reported here

are evaluations of the actual (expensive) function. On average, TRPDS(p)

takes 36 percent fewer concurrent function evaluations than the standard

TRPDS algorithm. In essence, TRPDS(p) replaces some of the expensive

concurrent function evaluations done in TRPDS by inexpensive model eval-

uations. Thus, this new variant is able to reach the solution while incurring

a lower computational cost. There are some cases when the original TRPDS

does beat TRPDS(p) (e.g., problem 10). In these cases, the quadratic model

used by PDS is a particularly poor approximation to the function early in

the optimization. For this reason, more iterations, and thus more concurrent

function evaluations, are required to reach the solution.

Figures 3 and 4 indicate that the number of processors a�ects the perfor-

mance of TRPDS(p) relative to TRPDS. In fact, TRPDS(p) takes 43 percent

fewer concurrent function evaluations than TRPDS when p = n+1. The dif-

ference is not nearly as substantial when p = 2�n. It is clear from the results

that TRPDS requires fewer concurrent function evaluations when p = 2�n.
This is not surprising for the following reason. Recall that the search scheme

size is �xed at 2 � n. So when p = n + 1, TRPDS requires two concurrent

function evaluations per PDS iteration, whereas when p = 2 � n, only one

concurrent function evaluation is required per PDS iteration. On the other

hand, TRPDS(p) was designed so that only one concurrent function evalu-

ation per PDS iteration is required, regardless of the number of processors.

This accounts for the di�erent relative performances of the two algorithms

on di�erent numbers of processors, and it brings to light the interesting ob-

servation described in the following paragraph.

Figure 5 shows a comparison of TRPDS(p) for two di�erent values of p.

In particular, we look at problems with n = 8 and compare performance for

p = n + 1 and p = 2� n. Notice that setting p = 2 � n yields little, if any,

improvement over p = n+ 1. This is because the trial step is usually chosen

from the n+1 best points as determined by the quadratic model. Thus, the

extra processors are being wasted on function evaluations that will not be

used. While we do not expect this to be true for all models or problems,

it does indicate that we must be careful when determining how to use the

processors available to us. For example, in this case, it may be more bene�cial

to use extra processors to speculatively evaluate a �nite di�erence gradient

at the most promising trial points. A careful study of this and related issues

is deferred to future work.

Finally, we compare TRPDS(p) to the BFGS trust-region algorithm with

17

speculative gradients. We show results for tests with the number of processors

equal to n + 1 and 2� n.

In Figure 6 we see that the BFGS trust-region algorithm with speculative

gradients requires fewer concurrent function evaluations than TRPDS(p). As

stated before, the case with the number of processors equal to n + 1 is the

optimal number of processors for speculative gradients, so we expect spec-

ulative gradients to be doing well here. However, TRPDS(p) demonstrates

that it can be competitive with speculative gradients.

Figure 7 compares TRPDS(p) with the speculative gradient BFGS trust-

region algorithm when the number of processors is 2 � n. Although the

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TRPDS(p), dim = 8

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

p = 9
p = 16

Figure 5: Comparison of TRPDS(p) with 9 and 16 processors. The dimension

of the problem is 8. The extra parallelism does not improve the number of

concurrent function evaluations for the TRPDS(p) algorithm. Perhaps the

extra parallelism can be put to better use.

18

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TRPDS(p) vs. TR with Speculative Grads

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

TRPDS(p)
TR with Spec Grads

Figure 6: Comparison of TRPDS(p) and BFGS trust-region algorithm with

speculative gradients. The dimension of the problem is 8, and the number of

processors is 9. The number of concurrent function evaluations required by

the BFGS trust-region algorithm with speculative gradients is less than the

number required by the TRPDS(p) algorithm on every problem.

speculative gradient method still usually takes fewer concurrent function

evaluations, TRPDS(p) is becoming more competitive. Note that the ad-

ditional processors (more than n+1) are not at all helpful to the speculative

gradient approach. If we continued to add more and more processors, we

could take advantage of them by also speculatively computing components

of a �nite di�erence Hessian. Beyond that, however, the speculative gradient

method could make no further use of additional processors. On the other

hand, TRPDS(p) could use these processors, not only for speculative compu-

tation, but also for other enhancements, some of which will be discussed in

section 5. Thus, we expect the exibility of TRPDS(p) to allow it not only

19

0 5 10 15 20 25
0

50

100

150

200

250

300

350
TRPDS(p) vs. TR with Speculative Grads

C
on

cu
rr

en
t F

un
ct

io
n

E
va

lu
at

io
ns

Test Problem Number

TRPDS(p)
TR with Spec Grads

Figure 7: Comparison of TRPDS(p) and BFGS trust-region algorithm with

speculative gradients. The dimension of the problem is 8, and the number of

processors is 16. In this case, the BFGS trust-region algorithm with specula-

tive gradients beats TRPDS(p) on most problems. The three exceptions are

problems 4, 10, and 18.

to catch up with the BFGS trust-region with speculative gradients, but to

surpass it.

4.2 Furnace design test problem - TWAFER

As a second example, we chose an optimal control problem for a vertical,

multi-wafer furnace. Vertical furnaces can process up to 200 silicon wafers

in a single batch and have been used for thin �lm deposition, oxidation,

and other thermal process steps. The evolution of vertical furnaces has been

driven by the need for process uniformity (that is, wafer-to-wafer and within-

20

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

AAAAAAAAAAAA
AAAAAAAAAAAA

Zone 1

Zone 2

Zone 3

Zone 5

Zone 6

Zone 4

Zone 7

Figure 8: Vertical Batch Furnace with Seven Control Zones

wafer uniformity) and high wafer throughput. A recent variation of the mul-

tiwafer reactor design is the small-batch, fast-ramp (SBFR) furnace. The

SBFR is designed to heat-up and cool-down quickly, thus reducing cycle

time and thermal budget. The SBFR consists of a stack of 50 eight-inch (di-

ameter) silicon wafers enclosed in a vacuum-bearing quartz jar. The stack is

radiatively heated by resistive coil heaters contained in an insulated canister.

The heating coils can be individually controlled or ganged together in zones

to vary the emitted power along the length of the reactor; a seven-zone con-

�guration is shown in Figure 8. There are six control zones (each containing

several heating coils) along the length of the furnace and one heater zone in

the base. The zones near the ends of the furnace are usually run hotter than

the middle zones to make up for heat loss.

The thermal optimal control problem can be described as follows. Given

a set number of heating coils in a �xed zone con�guration, �nd the optimal

power settings such that the temperature uniformity about a �xed set-point

21

is maximized. The objective function, f , is de�ned by a least-squares �t of

the N discrete wafer temperatures, Ti, to a prescribed temperature, T �,

F (p) =

NX

i=1

(Ti � T �)
2

(4)

where the p are the unknown power parameters.

The engineering heat transfer model used in this example was developed

by Houf [6] speci�cally for the analysis of vertical furnaces (the actual simu-

lation code used in our experiments is called TWAFER). The heat transfer

formulation is simpli�ed by using mass lumping and one-dimensional approx-

imations. The nonlinear transport equations are solved using the TWOPNT

solver [5], which uses a Newton method with a time evolution feature. There

0

500

1000

1500

2000

2500

3000

3500

4000

4500

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

Trust Region Spec Grad TR TRPDS TRPDS(p)

Figure 9: Comparison of standard trust-region method, trust-region with spec-

ulative gradients, TRPDS, and TRPDS(p) on 7-Zone TWAFER with 8 Pro-

cessors. The BFGS trust-region algorithm with speculative gradients is the

fastest algorithm.

22

are many di�erent parameter combinations that have been considered in pre-

vious studies of the TWAFER code [8]. For this particular example we used

only one con�guration, namely a problem with 7 heater zones: one bottom

heater and six equally-sized side heaters. Each simulation used a model that

contained 100 wafers with ten discretization points per wafer. Our initial

guess for the powers was: p = [100; 200; 300; 2700; 100; 400; 2000].

Figures 9 and 10 compare the total wall clock time required for solution

by the standard trust-region, BFGS trust-region with speculative gradients,

TRPDS, and TRPDS(p) algorithms. Comparisons are shown with n+1 and

2� n processors.

As in the previous test problems, going from a standard BFGS trust-

region algorithm to one using speculative gradients gives us approximately

0

500

1000

1500

2000

2500

3000

3500

4000

4500

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

Trust Region Spec Grad TR TRPDS TRPDS(p)

Figure 10: Comparison of standard trust-region method, trust-region with

speculative gradients, TRPDS, and TRPDS(p) on 7-Zone TWAFER with 14

Processors. TRPDS(p) takes the same amount of time to solution as with 8

processors. Perhaps the extra processors can be put to better use.

23

44 percent improvement in wall clock time in this case, and TRPDS(p) gives

nearly 80 percent improvement over TRPDS. The BFGS trust-region algo-

rithm with speculative gradients is signi�cantly faster in wall clock time than

the standard TRPDS algorithm and somewhat faster than TRPDS(p). Note

however, that the number of processors used in this example is n+1, the ideal

case for speculative gradients. Furthermore, TRPDS is doing two concurrent

function evaluations per iteration in this case.

In Figure 10, we have 2�n processors. Notice that while the speculative

gradient algorithm and TRPDS(p) algorithm perform exactly as they did on

the smaller number of processors in Figure 9, TRPDS is starting to catch

up. This is not surprising for the reasons already discussed with the standard

test problems. We emphasize again that because of its exibility, we expect

that TRPDS(p) can be modi�ed to make better use of additional processors,

yielding an algorithm faster than the speculative gradient approach.

5 Conclusions

We have added an option to calculate speculatively the gradient in the stan-

dard BFGS trust-region algorithm. Furthermore, we have added a new phase

to the solution of the PDS subproblem in the TRPDS algorithm that takes

advantage of an approximation model. Both of these options take advantage

of parallel processing. These two options were tested on a standard set of

test problems and on an engineering application. On these test problems,

the BFGS trust-region method with speculative gradients tended to do better

than the non-speculative variant, requiring up to 50 percent fewer concurrent

function evaluations and shorter wall clock time. Similarly, TRPDS(p) gen-

erally performed better than the standard TRPDS algorithm, requiring an

average of 36 percent fewer concurrent function evaluations and shorter wall

clock time. On these problems, the BFGS trust-region method with spec-

ulative gradients tended to perform better than TRPDS(p) using the same

performance criteria. However, TRPDS(p) is close enough to show promise,

and it o�ers a great deal of exibility for future performance-enhancing mod-

i�cations. We discuss our future plans below.

In order to improve the TRPDS(p) algorithm, we would �rst like to de-

termine which parameters have the greatest impact on the performance of

the algorithm. We expect to use techniques from the design and analysis of

computer experiments (DACE) literature in order to conduct this study.

24

Another factor to consider is that, like the traditional TRPDS algorithm,

we expect TRPDS(p) to be robust in the presence of noise. The results of

Hough and Meza [7] show that TRPDS outperforms a standard trust-region

method in the presence of noisy function values and gradient approximations.

We would like to compare TRPDS(p) and the BFGS trust-region method

with speculative gradients on a problem with noisy functions.

In order to take advantage of the great exibility of TRPDS(p), we would

like to incorporate di�erent types of approximation models, not only in the

PDS phase of the algorithm, but also within the trust-region framework. Al-

though the quadratic model has served us well, there may be approximation

models more suitable for the applications of interest. Alexandrov, Dennis,

Lewis, and Torczon [1] cite several examples that we would like to try. With

multiple models to choose from, we would like to come up with a model

management framework, as suggested in [1], where the approximation model

could change at every iteration. We would also like to consider alternatives

to the PDS subproblem with other computationally inexpensive approaches.

Finally, we intend to extend our work with speculative computations.

In particular, we would like to incorporate a speculative Hessian evaluation

in the standard trust-region method. We would also like to incorporate

speculative gradient evaluations in TRPDS(p).

Acknowledgments: The authors wish to thank John Dennis, Juan

Meza, and Virginia Torczon for many helpful discussions and suggestions.

References

[1] N. Alexandrov, J. E. Dennis, Jr., R. M. Lewis, and V. Tor-

czon, A trust region framework for managing the use of approximation

models in optimization, Structural Optimization, 15 (1998), pp. 16{12.

[2] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Parallel quasi-

newton methods for unconstrained optimization, Mathematical Pro-

gramming, 42 (1988), pp. 273{306.

[3] A. R. Conn, N. I. M. Gould, and P. L. Toint, Testing a class

of methods for solving minimization problems with simple bounds on the

variables, Tech. Rep. Research Report CS-86-45, University of Waterloo,

Waterloo, CA, 1986.

25

[4] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimiza-

tion, Academic Press, San Diego, CA, 1981.

[5] J. F. Grcar, Twopnt program for boundary value problems, version

3.10, Tech. Rep. SAND91{8230, Sandia National Laboratory, Liver-

more, CA, April 1992.

[6] W. G. Houf, J. F. Grcar, and W. G. Breiland, A model for

low pressure chemical vapor deposition in a hot-wall tubular reactor,

Materials Science Engineering, B, Solid State Materials for Advanced

Technology, 17 (1993), pp. 163{171.

[7] P. D. Hough and J. C. Meza, A class of trust-region methods for

parallel optimization, Tech. Rep. SAND99-8245, Sandia National Labo-

ratories, Livermore, CA, 1999.

[8] C. D. Moen, P. A. Spence, and J. C. Meza, Automatic

di�erentiation for gradient-based optimization of radiatively heated

microelectronics manufacturing equipment, in Proceedings of 6th

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, Bellevue, WA, Sept 4{6 1996.

[9] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom, Testing un-

constrained optimization software, ACM Transactions on Mathematical

Software, 7 (1981), pp. 17{41.

[10] R. B. Schnabel, A view of the limitations, opportunities, and chal-

lenges in parallel nonlinear optimization, Parallel Computing, 21 (1995),

pp. 875{905.

26

	ABSTRACT
	1 Introduction
	2 Speculative Gradients
	3 TRPDS with Generalized Approximation Models
	4 Numerical Results
	4.1 Standard Test Problems
	4.2 Furnace design test problem - TWAFER

	5 Conclusions
	References

